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EVOLUTION OF THE ROTATIONAL MOTION OF A VISCOELASTIC SPHERE IN A 
CENTRAL NEWTONIAN FORCE FIELD* 

V.G. VIL'KE, S.A. KOPYLOV and YU.G. MARKOV 

The motion of a viscoelastic sphere (a planet), whose centre of mass 
moves along a circular orbit in a central Newtonian force field, is 
considered. Using the method of separation.of motions and averaging, 
approximate equations are obtained which define the rotary motion of the 
sphere in canonical Andoyer variables, and the evolution of such motion 
is investigated. 

Approximate equations were obtained earlier /l/ which described the translational-rota- 
tional motion of a viscoelastic sphere in a central Newtonian force field, steady motions 
were determined and their stability investigated. Models of tidal phenomena which induce 
evolution of the rotational motion of planets were studied in /2-4/. The equation of the 
change of angular momentum of a viscoelastic sphere obtained in /l/ corresponds to the model 
of tidal effects, when the "tidal hump" is turned relative to the line attracting the centre 
of the planet mass, by an angle proportional to the angular velocity of planet rotation in 
orbital axes /4/. In addition, this equation contains the moment due to the deformation of 
the planet by the action of centrifugal inertia forces producing the planet regular precession. 

Let a homogeneous isotropic elastic sphere occupy a region 51 in the inertial system of 
coordinates 0 E,EIE, in the naturally undeformed state, and let the motion of the sphere be 
defined by the one-parameter group 

g': Q--t ES, f = g (c, t), r E Q, t E R' 

Following /l/, we represent the vector field g(r, t) in the form (here and subsequently, 
unless otherwise stated, the integrals are taken over the region Q) 

5 (r, t) = R (t) + 0 (t) (r + u (r, t)) (1) 

where p is the density of the sphere. Conditions (1) uniquely define the radius vector R(t) 
of the centre of mass of the sphere, the system of coordinates Cz,z,xa relative to which the 
sphere does not rotate in the integral sense. The operator O(t) belongs to the group of 
rotationsofthree-dimensional space and determines the transition from the system of coordi- 
nates Cz,zp, to Koenig's system C &f&a. 
are small (I auJaz,I< 1) 

We assume that the quantities &&,(i,j = i,2,3) 
and that the deformed state of the sphere is defined by the classical 

theory of elasticity of small deformations; in particular, the functional of potential energy 
of elastic deformation has the form /2, 5/ 

E [II] = j a’ (Z,* - a,‘Z,*) dx, a’ > 0, 0 < a,’ < 3 (2) 

E (1 -v) 
cl’= 2(1+,9)(i_-,v) ’ aI’= 

2 ( 1 - 2v) 
1-V 

where E,v are Young's modulus of elasticity and Poisson's ratio, respectively. 
The potential of gravitational forces and forces of inertia of translational motion (the 

translation motion of the system of coordinates C E,&) is given by the functional 

II, = - s up ([(R + 0 (r + u))'l-'1: + KSRCu) dx (3) 

where p is the gravitational constant. The gravitational intersection of particles of the 
body is defined by the potential-energy functional 

(g is the acceleration due to gravity on the sphere surface and rO is the sphere radius) 
which produces spherically symmetric deformation of the sphere /5/. It will be shown 
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subsequently that these deformations lead to the evolution of the sphere rotation. 
Consider the formulation of the problem when the oentre of mass of the sphere describes 

a Keppler circular orbit of radius R about the attractfng centre 0. Then 

R = RFP, FP = Cos6~, A sin*&. 6 = p-mt 

The configurational manifold of the system is then 

IV = so (3) x k”o 

v, = (u : u E (W,” (s-w, J ud.z - J rat u dx = 0) 

The functional of the kinetic energy in the motion relative to the system of coordinates 

C&M3 is 
1 

T = - 2 s 
[w ?< (C * II) + u’]” pds 

We intxoduce on the tangential stratification of the group of rotations 
Andoyer canonical variables Ii, mi (i = 1 ,2.3) 

SO (3) the 
/6/ and obtain the Routh functional of the form 

R, ir, g,u'.zi] = ~iG--G,,I-'iuIfc--~j)- {4i 

G=r’,T=g(r y- U) x [o Y (r + u) “L u’] 9 dr 

C,, = ( (r A- u) :I n’p dr 
I 

where J-1 fuj is the 
0 (t) in n,* 

inertza Operator in the system of coordinates &lx.$3, and the matrix 
and the vector of angular momentum G axe expressed in terms of Andoyer variables 

/7/ 

G = (v'*l,'sin (F,~ j/1,1-- co9 (F,, II) (5) 

0 0) = l-8 (V3) r, (6,) T‘S ((Fz) r1 (6x1 rJ (ccl) 

D 
~0~3. --inn 0' 

eesa a l fr(bj+V o 1 
jj n f is 

r3pj_~; c;& -wz~ 

5 a Ci3Sb 

This problem contains a "Iarqe" parameter, the characteristic of elastic sphere rigidity 
(Young's modulus is assumed large and, consequently, the sphere deformations are smal.1). III 
the limit, for infinite rigidity, the sphere deformation will be zero (_ = 0) and the Routh 
functional af the unperturbed problem will take the form 

RO = Is2 i(2A) 

where A is the rmnent of inertia of the undeformed sphere relative to its diameter. 
The unperturbed motion of the sphere is a .uniform rotation arcund one of its diameters 

with angular velocity vFo‘ = I,A-I. When the rigidity is finite the Routh equations take the 
form 

Ii' = --OqiR*, vi' = O$, (i = I, 2, 3) (6: 

~ j!~r,.R*-T,H,--~,.01X1)6uiIIro16u!dI=0 
F 

y&J .z 6, F = (u : 18 -s (w,‘(nt‘iy 

The second equation of (6) is written in the form of the d'Alembert-Lagrange variational 
principle and contains two undetermined multlpiiers L, and lie. The gradient of the dissipative 
functional V,.D defines viscous dissipative forces. We will assume that the dissipative 
functional D[u'l is proportional to thzlt of the potential energy of elastic deformations, if 
in the latter the components of ihe small deformation tensor is replaced by respective com- 
ponents of the velocity deformation tensor, i.e. Bfu'J = -gEfu‘i !*f. 

The second equation of 161 , taking (41 into accwnt has the form 



The last integral in (7) has been transformed by 
the sphere surface. The solution of Eq.(7) is sought 
meter s = 6’ 

u = .%I1 + e%* + 
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Gauss's formula and a is the normal to 
in the form of series in the small para- 

. . (8) 

Since subsequently we shall use the method of separation of motions and of averaging /a/, 
it is sufficient to determine the function u1 (r, t) which satisfies the equation 

S{ 
pr x J-' ]O] G*-+(G,J-‘[OJ V&[u]J-’ (01 G)- (9) 

EVE ]ul] - eXVE [uI’] + ppR-*r - 

3ppP (R”, or) CT’R” + &I] 6u dx + 
j 

(1Ls x n) 6~ do = 0 
Q 

In deriving Eq.(9) we used the equation 

where 

P'M = (J IO1 + J, IUJ + J, Iul) -1 =I-1101 - PIOIJ, 1u1r’101 + . . . 

PI01 = A-l diag {1,1,1}, J, 1111 = dJ IXulldh~~=, 

is linear with respect to the component u of the inertia operator of the deformed sphere. 
Note that V,J,[u] is independent of u. 

The following equations are also valid: 

(G, J, Iul G) = 2 Ir x G] lu x Gl p-h 

(G, VJ, [u] G) = -2pG ‘,: [G v rl 

If in the variational equation (9) we set & = s 6 ,fj? or 8u = 6a x (r + u) and 6a E ES 
(possible displacements correspond to the group of rotation-displacements of the three-dimen- 
sional space), we find that A, = A,= 0 /l/. Note that in the unperturbed motion G'=O, 
and we rewrite (9) in the form /l, 5/ 

- eTE [LIP + p1’] = A-SpG x [G ~ : r] + or - (10) 

3ppR-SO-‘Ro x [O-‘R’ x r], a = - 2ppP + gr;’ 

-EVE [UI] = [ AUI + &grad div u11 Y&J 

Equation (10) defines the quasisteady process of deformation of a viscoelastic sphere. 
The boundary conditions for the function ul are formulated on &Q in the form o.n = 0 where 
cl is the stress tensor. Since (10) is linear and its first two terms on the right side are 
independent of time, its solution can be represented in the form of the sum of three functions 
u, = ul, T- ' %t -t UlS which satisfy the equations 

- EVE Iu~,I = A-*pG x [G s r], -EVE [u,,J = ar (11) 
- EVE fu13 + xu13’l = - 3ppfP IO-‘R” s IO-‘R“ :.: r]] 

The solutions of (11) have the form /l, 2/ 

ull (4 = PI,'A-*~, (-- CPA rl (- 6,) u* (r, (W, (CPA r) 

u12(r)= 
(1 I V)(l -2V) 
10(1-V) L 

r2 3--v 01 , +V TO- ar 
m 

u13(rr t)= x (-xx)" 
J)lUl,O (1.. I) 

atn VI=0 

~~$0 (r, t) = - 3@P01-’ (t) u* (0, (t) r) 
- sin 6 cos 6 0 / 

olv)=rOmOu), r,(6)= 0 0 1 
I cos 6 sin6 0 I 

u* (r) = I@, r, r) B,r + (B, r, r) Bdr + B,l r 

B, = diag {b,, b,, h), B, = diag {I, 1, 0}, B, = diag {a,, al, a.,} 

B, = diag (0, 0, 1), B, = diag {cl, cl, CJ 

b, = - (4-3~ - 5v*) I& (v), b, = - (9-_8v - 5x12) rl’ (v) 

a, = 2 (3 - v) 9 (v), a4 = (1 + 3v) $ (9) 

(12) 

9(v) = 
i+v 

5(1 - v)(Sv 7 7) 
i2-8v-*2v* 

Cl = ro2 35 - ,O.$ _ 25.9’ c2 = - roz 
3+1&-3v~-lo\~~ 

35 - 10~ - 25~2 
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The function ulI(r) defines the ahsymmetric elastic deformation of the sphere (compression 
of the sphere along the axis of rotation) by the action of centrifugal forces of inertia 
generated by the sphere's own rotation. The functions $8 (r) correspond to spherically 
symmetric deformation of the sphere , produced by the inner gravitational and the external 
gravitational field. 

The external gravitational field also determines the unsteady deformation of the sphere 
(gravitational tides) which is defined by the function u,,(r, t). In an orbital system of 
coordinates CXyz (the CZ axis coincides with the direction to the attracting centre, the 
CX axis is tangent to the orbit, and the Cy axis is orthogonal to the orbital plane), the 
function uls(r.l) is represented by the first two terms of series (12) and has the form /2/ 

u13' (r'. t) = - 3@?-' {u* (r') + x I(B,r’, r‘) (SB, - B,S) + (13) 

(B3r r'r r') (SB4 - B$) + ro2 (SBs - B5S)l r' - 

2~ l(B, ST’, r’) BP + (B,S r’, r’) BJr’, S = O,‘O,-’ 

where S is a skew symmetric matrix that defines the angular velocity of the sphere Q* relative 
to the orbital system of coordinates Czyz. The series in (12) that defines uIs (r,t) converges, 

if x IR*I<I, while expression (13) approximates uls(r, t) quite well provided x iSI* I< 1, 
which is henceforth assumed. 

We substitute the function u (r, t) z eu,(r,i), taking (12) and (13) into account into the 
Routh functional and average the right sides of (6) over the "rapid" variables 9, and 6 /a/. 
The results obtained will describe the evolution of the motion of a viscoelastic sphere in 
Andoyer variables. 

Note that in the Routh functional (4) only two terms R, and n,, where 

R, = Vz (G - G,, J-‘lul (G - G,)) 

depend on the Andoyer canonical variables. We will represent these terms, apart from small 
terms of order E and ~3, in the form 

R, = R. - ‘/, Ed-’ (G, J, [u,l G) - eA-l (G,‘, G) (14) 

II, = D, - ppR_’ e s [3 (0-l R”, r) (0-l R”, ul) - (r, u,)l dx 

D, = - pMR3 

G,’ = 1 (r Xq’) pdz, (J, Iu,l G, G) E 2 j Ir x Gl [u, xGI pdz 

In the system of coordinates Cx,xg,, integrally connected with the sphere, the vector G 
is constant in the unperturbed motion, and the function u,(r, t) depends on time through the 
variables me = Z,A-‘t + cpp(0),it, and is 2rt periodic in them. 

Since the operation of averaging 

hence 

where pk takes values Z,,ZI,Z,,cpI,cp,,cp,. 
The term -eA-l(G,', G) thus does not contribute in the averaging to the right sides of 

(6). 
The second term in R, has the form 

- '/r s-4-* I(G, Jr [u,,) G) + (G, J, [u,tl G) + (G, J, lul,l G)l 

Since ult(r) is a spherically symmetric function, we have 

(G, J, lu,,l G) = V,fl (an) 12 

which results only in a perturbation of the rapid variable m, in the respective equation of 

(6). The term 

(G, J, Iu,,l G) = (I1 [pZ,*A-* u* (r*)l rl W r3 (~4 G 
rl(6,) rs (cp,) G) 

where the second scalar product is given in a system of coordinates one of whose axis coincides 
with the vector G. The function u+(r*) is symmetric in this system of coordinates, and the 

operator J,has the form 

J, [pl,*_4%* (r*)l = diag {m,, n,, m,) + diag (0, 0, m, -m,} 

where m,, m, are constants. 
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Then 

(G, Jl Iulll G) = mlZa2 + Wag K4 0, m2 - ml) rl (6,) rs (cpl) G, 
rl (6,) rs (CPJ G) = mJsP + (mz - ml) (G, sin 6, sin ‘pl + 

G,sin 6, coscp, + G,cos 6Ja 

G, = 1/Zs2 - I,” sin pl, G, = 1/m cos cp,, G, = I, 

from which it follows that 

& (G, JI Id G) = (ml - ml) 2 (G1 sin h2 sin (pl + 

G sin 62 cas or+ GS cos 6,) (1/12 - 112 cos (pl sin b2 sin cpl - 

]‘I2 - 11~ sin (~1 sin h2 coscpl)== 0 

& (G, JI lull G) =m& (G, J~[UII G) = 0 

&(G, JI [UI] G)=2 (mz-mml)(GI sin &sin& + 

G2 sin 62 cos w + GS cos 6,) 
g,,. 

_ sin (pl sin h2 sin cpl - 

11 
f/l,n - I,2 

cos(yrsin62coscpl + cos& =O 
j 

-$-(G,JI[uI]G)=~~IZ~ + 2(m? -ml)Z2=2msZ2 

Thus the non-zero term provides a correction only to the derivative of the rapid variable 
(Pn. 

Further 

When averaging over 6 and q1 the terms containing 6' and q; provide only zero, since 
the function ulsO (r,fl,(~J is 2s periodic in 6 and q,. It remains to consider the term 

(G, Jr LO I G) = (J1 I--3ppZP n*(r*)lO, (4 G, O,(t) G) 

where the second scalar product is written in the orbital system of coordinates. 
Since 

we have 

J, [--3ppZPu* (r*)l = diag {II, I,, L1} + diag (0, 0, 1, - iI} 

(G,J,Iuraa 1 G) = Z,Z,* + (diag {O,O, 1, - 11} 0, (t) G, O1 (t)G) = 

l,Z,p + (b - 4) Fly,, + G,v,, + GsM 

where 01 (t) = (Tit)3 4, I* are constants, and (ys,, ysr, ysa) are components of the unit vector e, 
on the axis of the orbital system of coordinates Cz in the system of coordinates CZ,W,, 
attached to the sphere. We shall show that in calculating partial derivatives of the expression 

(G, J, [u,J G) f only the derivative with respect to Z,is different from zero. The vector G 

is independent of Zs,rp2,q3, and its derivatives aG/acp, and aGlaZ, are orthogonal to G. We 
have 

+, (G, Jr Iuml G) = 2 (IS - I,) (G, e,) ($$, e,) 

-& (G, JI Iuml G) = 2 (Z2 - 11) (G, e,) (2, e,) 

The pair of vectors G, aGiacp, and G, aciaz, is orthogonal to and fixed in the system 
of coordinates CX,X~X,, and the vector e, rotates at constant angular velocity connected with 
the variation of the angles 'p, and 9. It follows from this that the projection of the vector 

e, rotates at constant velocity in the plane which contains vectors G, aGiacp, and G, aG/az,, 
and its product with mutually orthogonal vectors , yields zero as a result of the averaging 
operation. 

Thus the term Z?, in the Routh functional yields, after averaging in the equations of 
perturbed motion (61, terms that are non-zero only in the equation for the rapid angular 
variable (p,. Consequently, the evolution of slow variables Z,(i = 1,2,3), ql,qs will be deter- 
mined by the term n, in the Routh functional (4). 

By relation (14), on the right sides of (6) there will remain from n, only the derivatives 
of the quantities 

- 3ppK3~ i s (R”, Or) (R”, Oqk) dt 
k-l 
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where the operator 

fJ = rr (CPA r, (6,) rr (Q) r, (6,) rr (n) 

depends on the Andoyer variables. 

Since u,* (r) is a spherically symmetric function, the term 

$ (O-W, r) (@‘R”, u,* (r)) & 

is independent of the vector O_rR" and, consequently, does not affect the right sides of 
(6). 

Consider the term 

P, - j (0-‘R”, c) (0-‘R*, q1 (r)) dir = 

S (r, (w, (Q,) a_lRe, r*) (r, (6,) r, (cP,) 0-*RB. 
U* (r*)) pl*pA-2& 

Denoting the coordinates of the vector rI(6,)r,(cp,)@1Ro by (ar,a,,a,), and using relation 
(121, we obtain 

Since al2 -+ aI + as* = 1, we have 

PI = D,' + D,a,’ = D,’ + DI (c (wi kd & (-%)X 
r, t- 6,) rs (- R) rl (- 4) rr (-WI ro-a (6) e,, 4) * 

Da = P~s*A-~ I(an - 4) 1, + @a, - b, - W fr + @s - 4 fsl 

D,’ = pi,*A-* (hi, + bj, + bJ, + efr), e, = KW) 

(15) 

Note that the Andoyer variables by which we calculate the partial deriatives in (61, are 
contained only in the terms in the brackets, i.e. 

where &'il denotes the partial derivative with respect to one of variables p,, T,,Q, l,.I,, 
Calculating the partial derivatives and averaging over m, and 6, we obtain 

(16) 

Let US calculate the partial derivatives with respect to Andoyer 
pression 

variables of the ex- 

P, = 1 (0-W. r) (PR”. u,~ (r, t)) & (17) 

The integral in (17! is conveniently calculated In the orbital system of coordinates 
since the function II,~(~, E) has the simplest form in that system. The operator of transfer- 

ring fromaxes attached to the sphere to orbrtal axes is 

0, (0 = L = TO (6) 0, 0 = r3 (q3)rl (a,) rS (94 rl (6,) rl (v,) 

and then 

P, = j (,!xTW, r’) (LPR”, u,~’ (r’, t)) C?Z 

where n,,'(r'.i) is represented by formula (13), and 

JW-~R~ = e, (yt. ye. ‘r’& y1 = 1x3 = 0, ya = I 

However later on it is necessary to calculate derivatives with respect to Andoyer 
variables of the matrix 0-1, and hence in evaluating the integral we retain the notation 

for the components of vector e, (yr, y,,ys). First of all we obtain from (13) 

r, 0 gr gr! 
S=I!-gr 0 gs 

il 1 

(11)) 

--82 -gg, 0 I 
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and then 

IQ’ (r’, t) = au* (r*) - ax l(b, - al) (2’ + sr*) + (b, - a&* f 

Cl - 4 k?*z, wz, lw f &WY) - 2ax I& - b) (z, y, 0) + 

(a, - 4 (0, 0, 41 (g,,u + wz), a = - 3pgdP 

As a result, we obtain 

PI = (~12 + ~2') ZJ, -t %'a=& - W'S Dsg, - y&U, 

DI, = a j Lb, (9 + ys) + bd + c,l se& 

D1 = a j hz, (9 f y9 i- a& + c,l z*dz 

D, = axf<l@l - 4 (2” + 53 + (b, - a3 z* + El - c*l x 

(X2 + !/‘I + 2 fa, - a, + b, -_b,)zSz2f dz 

Then 

ae,-_ 
dTJ1 

-L$g R”+ <ii&* = 
(-- co.3 61 cos 61, - sin 61 cos & cos (6 - cps), 0) 

(19) 

(20) 

In calculating the expressions in (20) the averaging was carried out over the angle (p2, 
since this angle does not appear in g, and g, in (18). Calculating the partial derivatives 
with respect to canonical variables of PI, averaging the results over 'p, and 8 and taking 
into account the relations (18)-(201, we obtain 

As the result of averaging, we obtain from (6) approximate equations that define the 
evolution of the viscoelastic sphere rotational motion 

Z,'= _ k,+ [Y-*AB') @$ Is2 (22) 

II’ = _ kl 
i 
w _ ‘9 ‘46 

I;=-kk,(I,-1A6’) 
Ia ) 

Q = 0, (~3 = - Ms 

k _ Q~~*~Y, 
1--- s W, - d (s2 + Y”) + (bz - a3 z* 4 

cl-c,] (9 + 9) _t 2 (al - a2 + br -- b2) x~z2} dx > 0 

kZ = +kl>O 

From (22) it follows that I, approaches A6', and 

Z, = -46' + (I* (O)- A6')e+ 

Then 

f23) 

z,* = AW2 + (11% (0) - Z,Z (0) - 21, (0)/N - 2A%!W)e-k" + (I8 (0) - _46')2e-Qk*' (24) 

6% 

Relation (24) determines the law of variation of I, which also approaches A6'. 
between the axis CX, and the vector G does not vary, since by (22) 

The angle 

This means that Z,varies in proportion to the variation of Z, 

Z, (t) = Z, W Z, WZ, (0) 
Since the angles q1 and 6, are constant, the axis of rotation of the sphere is fixed in 

the system of coordinates which is integrally connected to the sphere. 
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In the course of evolution the axis of rotation of a viscoelastic sphere approaches the 
normal to the orbital plane and the angular velocity of the sphere approaches the orbital 
angular velocity. 

Two small parameter k, and k, occur in (22), and k,< k,. Consequently, in the rotational 
motion of the sphere there are two evolutions, a rapid and a slow one. The rapid and a slow 
one. The rapid evolution is defined by (22) with k, ~0, when only the angle 'pa varies and 
the vector G describes a circular cone with axis of symmetry that coincides with the normal 
to the orbit. The slow evolution corresponds to terms that contain k, in (22) and defines 
the variation of the quantities I,,I,, I,. 

REFERENCES 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 

VIL'KE V.G., Motion of a viscoelastic sphere in a central Newtonian force field. PMM, Vol. 
44, No.3, 1980. 

VIL'KB V.G., Analytical and Qualitative Methods in the Dynamics of a System with an 
Infinite Number of Degrees of Freedom. Moscow, Izd. MGU, 1982. 

Tides and Resonances in the Solar System. Collected papers, Ed. V.N. Zharkov, Moscow, Mir, 
1976. 

BELBTSKII V.V., Motion of a Satellite Relative to the Centre of Mass in a Gravitational 
Field. Moscow, Izd. MGU, 1975. 

LANDAU L.D. and LIFSHITZ E.I., Theoretical Physics. Vo1.7, The Theory of Elasticity, Moscow, 
Nauka, 1965. 

ANDOYER M.H., Cours de M&anique C&este. Paris. Gauthier-Villars. Vol.1 & 2, 1926. 
VIL'KE V.G., On the evolution of the motion of a heavy symmetric body carrying viscoelastic 
rods. Vestn. MGU, Ser. 1, Matem. Mekhan., No.2, 1982. 

VIL'KE V.G., The separation of motions and the method of averaging in the mechanics of 
systems with an infinite number of degrees of freedom. Vestn. MGU, Ser. Matem. Mekhan., 
No.5, 1983. 

Translated by J.J.D. 

PMM U..S.S.R.,Vol.49,No.l,pp.24-30,1985 0021-8928/85 $1o.OO+O.oo 
Printed in Great Britain 01986 Pergamon Press Ltd. 

THE PROBLEM OF THE OPTIMUM RAPID BRAKING OF AN AXISYMMETRIC SOLID 
ROTATING AROUND ITS CENTRE OF MASS* 

M.Z. BORSHCHEVSKII and I.V. IOSLOVICH 

The problem of the braking of a solid with an axisymmetric ellipsoid of 
inertia using three pairs of jet engines producing control moments directed 
along the principal axes of the ellipsoid of inertia /l-4/ is considered. 
The structure of the optimal trajectories is analyzed. It is shown that 
the four rays that lie in the plane normal to the axis of dynamic symmetry 
are not only the chase trajectories with special control /3/, but perform 
the part of main lines. The optimal trajectories reach the main lines 
after an infinite number of control reversals. Such trajectories which 
reach the main lines fill, in phase space, the outer region of two inter- 
secting circular cones encircling the axis of dynamic symmetry. 

1. Statement of the problem and formulation of the basis results. The 
problem of the most rapid braking of the rotation of asolidwitb an axisymmetric ellipsoid 
of inertia can be formulated as follows /l/. The system of Euler equations is given in the 
normal form 

x' = b,u,, y’ -= - Dzz + bpunr z’ = Dxy -t- b,us; D = (A - C) / B, B = A (1.1) 

with constraints 
1 uj 1 <; 1, i = I, 2, 3 (1.2) 

where r, Y, s are the projections of the vector of the instantaneous angular velocity of the 
solid in a moving system of coordinates attached to the principal axes of the centralellipsoid 
of inertia, uI are the controls, bi are constants, and A,B,C are the mOI&entS of inertia. It 

is required to transfer an arbitrary phase point of system (l.l), whose coordinates at the 
instant t =O are denoted by (rO, Y,, z,), into the origin of coordinates in the minimum time. 
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